AHRQ/HRET Web Conference for the Florida Hospital Association

Quality Indicators and Their Use in Improving Quality of Care and Patient Safety

October 21, 2010
Web Conference Presenters

- Patrick S. Romano, MD, MPH: Professor of Medicine and Pediatrics, UC Davis Division of General Medicine
- David Schulke, Vice President for Research Programs, Health Research and Educational Trust (HRET)
- Kim Streit, Vice President, Healthcare Research and Information, Florida Hospital Association (moderator)
Dr. Patrick Romano will discuss a variety of the PSIs and how they can be used to improve quality at the hospital level.

Kim Streit and David Schulke will conclude with next steps regarding the QIs and will open the Q&A session.
How the AHRQ Patient Safety Indicators are Used to Drive Quality Improvement at the Hospital Level

Patrick S. Romano, MD MPH
UC Davis Center for Healthcare Policy and Research
AHRQ Quality Indicators

Inpatient QIs
- Mortality
- Utilization
- Volume

Prevention QIs
(Area Level)
- Avoidable Hospitalizations / Other Avoidable Conditions

Pediatric QIs
- Neonatal QIs

Patient Safety QIs
- Complications, Unexpected Death
AHRQ Patient Safety Indicators

- Reflect quality of care inside hospitals, focusing on potentially avoidable complications and related iatrogenic events.
 - Can be used to help hospitals identify potential adverse events that might need further study
 - Include 19 indicators for complications occurring in-hospital that may represent safety-related events
 - 6 indicators also have area level analogs designed to detect patient safety events on a regional level
 - 10 were endorsed by National Quality Forum
 - 4 were adopted by CMS for RHQDAPU (plus composite that includes 5 others)
NQF Endorsement of PSIs

<table>
<thead>
<tr>
<th>PSI</th>
<th>Label</th>
<th>PSI</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI 2</td>
<td>Death in Low Mortality DRGs</td>
<td>PSI 12</td>
<td>Postoperative Pulmonary Embolism or Deep Vein Thrombosis</td>
</tr>
<tr>
<td>PSI 4</td>
<td>Death among Surgical Inpatients with Treatable Serious Complications</td>
<td>PSI 14</td>
<td>Postoperative Wound Dehiscence</td>
</tr>
<tr>
<td>PSI 5</td>
<td>Foreign Body Left in during Procedure</td>
<td>PSI 15</td>
<td>Accidental Puncture or Laceration</td>
</tr>
<tr>
<td>PSI 6</td>
<td>Postoperative Respiratory Failure</td>
<td>PSI 16</td>
<td>Transfusion Reaction</td>
</tr>
<tr>
<td>PSI 11</td>
<td>Iatrogenic Pneumothorax</td>
<td>PSI 17</td>
<td>Birth Trauma – Injury to Neonate</td>
</tr>
</tbody>
</table>

The NQF-endorsed composite also includes PSI 3 (Pressure Ulcer), PSI 7 (Central Venous Catheter-Related Bloodstream Infection), PSI 8 (Postoperative Hip Fracture), PSI 12 (see above), and PSI 13 (Postoperative Sepsis).
CMS Preview Report

AHRQ Patient Safety and Inpatient Quality Measures Adopted for RHQDAHU

February 2010

HEARTCARE REGIONAL MEDICAL CENTER

Provider ID: 840002

State

Table 3: Your Hospital's Performance on Individual Measures

<table>
<thead>
<tr>
<th>Patient Safety Indicators (Rate per 1,000)</th>
<th>X Indicates Measure Will Be Posted on CMS Website</th>
<th>Measure's Weight in Composite</th>
<th>Number of Outcomes (Numerator)</th>
<th>Number of Eligible Discharges (Denominator)</th>
<th>Observed Rate per 1,000 Eligible Discharges</th>
<th>Expected Rate per 1,000 Eligible Discharges</th>
<th>Risk-Adjusted Rate</th>
<th>Risk-Adjusted Rate's 95% Confidence Interval</th>
<th>CMS National Rate</th>
<th>Smoothed Rate</th>
<th>Smoothed Rate's 95% Confidence Interval</th>
<th>State Smoothed Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI 03 – Decubitus Ulcer</td>
<td></td>
<td>0.2811</td>
<td>26</td>
<td>880</td>
<td>26.53</td>
<td>35.76</td>
<td>17.28</td>
<td>(8.87, 24.65)</td>
<td>27.46</td>
<td>17.88</td>
<td>(10.73, 25.04)</td>
<td>25.10</td>
</tr>
<tr>
<td>PSI 06 – Iatrogenic Pneumothorax</td>
<td>x</td>
<td>0.0440</td>
<td>1</td>
<td>2,643</td>
<td>0.38</td>
<td>0.47</td>
<td>0.46</td>
<td>(0.00, 1.48)</td>
<td>0.67</td>
<td>0.61</td>
<td>(0.08, 1.14)</td>
<td>0.64</td>
</tr>
<tr>
<td>PSI 07 – Selected Infections Due to Medical Care</td>
<td></td>
<td>0.1370</td>
<td>2</td>
<td>2,083</td>
<td>0.97</td>
<td>1.94</td>
<td>1.07</td>
<td>(0.00, 3.15)</td>
<td>1.65</td>
<td>1.20</td>
<td>(-0.61, 3.02)</td>
<td>1.39</td>
</tr>
<tr>
<td>PSI 08 – Postoperative Hip Fracture</td>
<td></td>
<td>0.0024</td>
<td>0</td>
<td>211</td>
<td>0.00</td>
<td>0.47</td>
<td>0.00</td>
<td>(0.00, 1.72)</td>
<td>0.28</td>
<td>0.20</td>
<td>(-0.76, 1.16)</td>
<td>0.33</td>
</tr>
<tr>
<td>PSI 12 – Postoperative Pulmonary Embolism or Deep Vein Thrombosis</td>
<td></td>
<td>0.1604</td>
<td>2</td>
<td>353</td>
<td>5.87</td>
<td>12.47</td>
<td>4.44</td>
<td>(0.00, 13.48)</td>
<td>11.11</td>
<td>7.83</td>
<td>(1.50, 14.17)</td>
<td>10.15</td>
</tr>
<tr>
<td>PSI 13 – Postoperative Sepsis</td>
<td></td>
<td>0.0265</td>
<td>1</td>
<td>76</td>
<td>13.16</td>
<td>7.43</td>
<td>19.38</td>
<td>(0.00, 47.64)</td>
<td>16.19</td>
<td>17.33</td>
<td>(0.47, 34.19)</td>
<td>14.78</td>
</tr>
<tr>
<td>PSI 14 – Postoperative Wound Dehiscence</td>
<td>x</td>
<td>0.0130</td>
<td>0</td>
<td>43</td>
<td>0</td>
<td>3.00</td>
<td>0.00</td>
<td>(0.00, 11.10)</td>
<td>2.15</td>
<td>2.09</td>
<td>(0.33, 3.86)</td>
<td>2.06</td>
</tr>
<tr>
<td>PSI 15 – Accidental Puncture or Laceration</td>
<td>x</td>
<td>0.3355</td>
<td>4</td>
<td>2,885</td>
<td>1.40</td>
<td>0.85</td>
<td>5.67</td>
<td>(1.26, 10.08)</td>
<td>4.33</td>
<td>4.85</td>
<td>(2.11, 7.50)</td>
<td>4.24</td>
</tr>
<tr>
<td>PSI 04 – Death Among Surgical Inpatients with Serious Treatable Complications</td>
<td>x</td>
<td>N/A</td>
<td>5</td>
<td>28</td>
<td>178.57</td>
<td>137.90</td>
<td>168.88</td>
<td>(52.09, 265.23)</td>
<td>133.81</td>
<td>139.07</td>
<td>(93.05, 186.10)</td>
<td>141.72</td>
</tr>
</tbody>
</table>

Individual Measures That Make Up PSI Composite – Complication/Patient Safety for Selected Indicators

Individual Measure Reported Separately – Not Part of PSI Composite
Complication/Infection Rates

Age Group: Age 18 years and older
Time Period: January 2009 through December 2009

Directions:
View the results below or if you would like to change the “sort-by-column” use the drop-down box, then click “View Results”. To learn more about the data, click the column heading. To learn more about the facility, click the facility name. For the Health Encyclopedia References for Complication/Infection Rates click here.

- Sort by Column -

 - Ascending (A-Z, 0-9)
 - Descending (Z-A, 9-0)

View Results

<table>
<thead>
<tr>
<th>Facility / City</th>
<th>Decubitus Ulcer</th>
<th>Iatrogenic Pneumothorax</th>
<th>Infections Due to Medical Care</th>
<th>Postoperative Hip Fracture</th>
<th>Postoperative Pulmonary Embolism or Deep Vein Thrombosis</th>
<th>Postoperative Sepsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETHESDA MEMORIAL HOSPITAL 100002</td>
<td>Lower than Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>Lower than Expected</td>
<td>As Expected</td>
</tr>
<tr>
<td>Boca Raton</td>
<td>Lower than Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>Lower than Expected</td>
<td>As Expected</td>
</tr>
<tr>
<td>BOCA RATON COMMUNITY HOSPITAL 100168</td>
<td>Lower than Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>Lower than Expected</td>
<td>As Expected</td>
</tr>
<tr>
<td>West Palm Beach</td>
<td>Lower than Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>Lower than Expected</td>
<td>As Expected</td>
</tr>
<tr>
<td>COLUMBIA HOSPITAL 100234</td>
<td>As Expected</td>
<td>Lower than Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
</tr>
<tr>
<td>Doral Beach</td>
<td>As Expected</td>
<td>Lower than Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
</tr>
<tr>
<td>DELRAY MEDICAL CENTER 100258</td>
<td>Lower than Expected</td>
<td>Lower than Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>Lower than Expected</td>
<td>As Expected</td>
</tr>
<tr>
<td>West Palm Beach</td>
<td>Lower than Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
</tr>
<tr>
<td>GOOD SAMARITAN MEDICAL CENTER 110403</td>
<td>Higher than Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
</tr>
<tr>
<td>West Palm Beach</td>
<td>Higher than Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
<td>As Expected</td>
</tr>
<tr>
<td>JFK MEDICAL CENTER 100080</td>
<td>As Expected</td>
<td>As Expected</td>
<td>Higher than Expected</td>
<td>As Expected</td>
<td>Higher than Expected</td>
<td>As Expected</td>
</tr>
</tbody>
</table>
PSI Validation Methods

- Gather evidence on the criterion validity of the PSIs based on medical record review as “gold standard”
- Improve guidance about how to interpret & use the indicators, especially for quality improvement
- Retrospective cross-sectional study design
- Volunteer sample of 47 partners (78% nonprofit, nonreligious) plus parallel study of 28 VA hospitals by Rosen et al.
- Sampling based on administrative data using AHRQ QI software to generate desired sample size locally (30 per hospital) and nationally (240 per PSI) from 2006-7
- Coordinated with UHC on Clinical Benchmarking Projects (involving volunteer AMCs) for Postoperative DVT/PE, Postoperative Respiratory Failure, and Pressure Ulcer.
Summary of PPV estimates from community hospitals

% cases

% PPV

% POA

% Miscoding

% Exclusions

% Other

0% 20% 40% 60% 80% 100%

APL, n=249
PTX, n=205
DVT/PE, n=121
Selected inf, n=191
Postop sepsis, n=164
Postop resp failure, n=609
Other evidence regarding PSI criterion validity

- **Catheter-associated BSI**
 - National Healthcare Safety Network 24 hospitals: *sensitivity=9%*

- **Postoperative DVT/PE**
 - Single US teaching hospital: *PPV=50%, sensitivity=87%*

- **Postoperative respiratory failure**
 - UHC 18 hospitals: *PPV=93%*
 - Veterans Affairs 28 hospitals: *PPV=80%*

- **Pressure ulcer**
 - UHC 32 hospitals: *PPV=60% (after excluding POA)* but NPV=85% in high-risk cases not reported as having PU
 - Veterans Affairs 28 hospitals: *PPV=29% (not excluding POA)*

- **Postoperative wound dehiscence**
 - Veterans Affairs 28 hospitals: *PPV=88%*
Moore Demonstration Project (MDP)

- Goal 1: To develop a collaboration with 3 northern CA hospitals to collaboratively review cases flagged by PSIs
- Goal 2: To provide information useful for improving coding and quality of care in the future
- Retrospective cross-sectional design
- Consecutive sampling using AHRQ QI software to identify up to 100 cases of ≥4 PSIs at each hospital (10/07-2/09)
- “Present on admission” (POA) logic was used in V3.2, March 2008 software to reduce false positives
- Each hospital identified RN or MD abstractors, who were trained to use “root cause” PSI tools and guidelines
- UC Davis entered data, identified discrepancies, and performed descriptive analysis of opportunities for QI
PSI 6: iatrogenic pneumothorax
MDP opportunities for improvement

- Watch for inadequate documentation, such as “rule out” pneumothorax without alternative diagnosis established after study (CXR or CT)

- Increase use of “bedside” ultrasound guidance during placement of central venous catheters, especially in the OR, ICU, and ED (proven to reduce iatrogenic injury during IJ placement)
Case study: iatrogenic pneumothorax

AHRQ Patient Safety Indicators
Iatrogenic Pneumothorax
Rate per 1000

<table>
<thead>
<tr>
<th>Year</th>
<th>Period</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Q2</td>
<td>(N=2969)</td>
</tr>
<tr>
<td>2003</td>
<td>Q4</td>
<td>(N=4439)</td>
</tr>
<tr>
<td>2004</td>
<td>Q2</td>
<td>(N=4533)</td>
</tr>
<tr>
<td>2004</td>
<td>Q4</td>
<td>(N=4474)</td>
</tr>
<tr>
<td>2005</td>
<td>Q2</td>
<td>(N=4615)</td>
</tr>
<tr>
<td>2005</td>
<td>Q4</td>
<td>(N=5010)</td>
</tr>
<tr>
<td>2006</td>
<td>Q2</td>
<td>(N=5195)</td>
</tr>
<tr>
<td>2006</td>
<td>Q4</td>
<td>(N=5164)</td>
</tr>
<tr>
<td>2007</td>
<td>Q2</td>
<td>(N=5164)</td>
</tr>
<tr>
<td>2007</td>
<td>Q4*</td>
<td>(N=5164)</td>
</tr>
</tbody>
</table>

Observed
Target
UHC Median
Action Plan for Iatrogenic Pneumothorax

GOAL: Reduce the rate of iatrogenic pneumothorax (IAP) from central venous catheterization (CVC) by 50% by 6 months.

<table>
<thead>
<tr>
<th>Action</th>
<th>Agent</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promote ultrasound-guided internal jugular (IJ) catheterization as the method of choice for CVC</td>
<td>• L. Shieh to revise CVC Website Curriculum & Simulation Program to further promote IJ approach</td>
<td>Start Jan 22 & ongoing</td>
</tr>
<tr>
<td>Limit use of subclavian approach (with faculty supervision) to: • access to the neck is limited (e.g., trauma/code resuscitations) • patients with suspected neck injuries • lack of other available sites</td>
<td>• Drs. Maggio, Williams, Mihm & Lee to educate ED, OR & General Surgery. Drs. Mihm, Riskin and Daniels to educate ICU. Dr. Shieh to educate B2 & D1. • I. Tokareva to develop & distribute educational materials to reinforce</td>
<td></td>
</tr>
<tr>
<td>Ensure availability of ultrasound equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require all medical & surgical interns to complete CVC Website Curriculum & Simulation Program during orientation (“Bootcamp” for surgical interns)</td>
<td>• Drs. Shieh, Maggio, Williams, Mihm & Lee • Monitor quarterly IAP rates for impact</td>
<td>June 30</td>
</tr>
</tbody>
</table>
Iatrogenic Pneumothorax (IAP) Data

Findings

- Overall SHC IAP rate per 1000 discharges is trending down.
- The best performance occurred in 2009Q3 with SHC IAP rate of 0.56 per 1000 inpatient discharges, but this remains slightly above target. Please note that if 2 cases in 2009Q3 are recoded and removed, SHC IAP rate would be at zero.
Findings

- Overall IAP CY 2007-2009 rate is trending down
- 70% of CVC cases were due to SC (19/27)
* Other – infrequent causes of IAP (occurred 1 time per service per cause)
About 14 pneumothorax cases were prevented at one AMC in CY 2009.

Extrapolating from RCT findings and 2004 HCUP data, at least 1725 of the 14729 reported pneumothorax cases among hospitalized adults in nonfederal hospitals and at least 431 of 3682 additional outpatient-acquired, hospital-treated pneumothorax cases could have been prevented through universal use of ultrasound during IJ cannulation (given no change in insertion site distribution).

Each pneumothorax adds (on average) 4.4 inpatient days and $17,312 in hospital charges (3.9 days in VA, >5 days in Medicare).

PSI 7: CVC-related bloodstream infection
MDP opportunities for improvement

- Identify tunneled catheters that are infected at admission and code as POA
- Minimize use of femoral venous catheters, which are associated with higher rates of infection
- Remove catheters at earliest opportunity consistent with patient safety
Use of Simulation-Based Education to Reduce Catheter-Related Bloodstream Infections

Jeffrey H. Barsuk, MD; Elaine R. Cohen, BA; Joe Feinglass, PhD; William C. McGaghie, PhD; Diane B. Wayne, MD

Background: Simulation-based education improves procedural competence in central venous catheter (CVC) insertion. The effect of simulation-based education in CVC insertion on the incidence of catheter-related bloodstream infection (CRBSI) is unknown. The aim of this study was to determine if simulation-based training in CVC insertion reduces CRBSI.

Methods: This was an observational education cohort study set in an adult intensive care unit (ICU) in an urban teaching hospital. Ninety-two internal medicine and emergency medicine residents completed a simulation-based mastery learning program in CVC insertion skills. Rates of CRBSI from CVCs inserted by residents in the ICU before and after the simulation-based educational intervention were compared over a 32-month period.

Results: There were fewer CRBSIs after the simulator-trained residents entered the intervention ICU (0.50 infections per 1000 catheter-days) compared with both the same unit prior to the intervention (3.20 per 1000 catheter-days) (P = .001) and with another ICU in the same hospital throughout the study period (5.03 per 1000 catheter-days) (P = .001).

Conclusions: An educational intervention in CVC insertion significantly improved patient outcomes. Simulation-based education is a valuable adjunct in residency education.

Arch Intern Med. 2009;169(15):1420-1423
Case study: CVC-related bloodstream infection

Logic of indicator may capture both intraoperative and postoperative hemorrhage (especially if bleeding persists after surgery)

Impact of true positive cases was significant (i.e., most returned to OR), but opportunities for improvement are unclear

Most cases not related to anticoagulants or antiplatelet agents
Case study from one AMC

<table>
<thead>
<tr>
<th>AHRQ PSI</th>
<th>Coding problem</th>
<th>Definition problem</th>
<th>Potential Clinical Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumothorax</td>
<td>5 (12%)</td>
<td>0 (%)</td>
<td>38 (88%)</td>
</tr>
<tr>
<td>Postoperative Hemorrhage or Hematoma</td>
<td>3 (8%)</td>
<td>10 (26%)</td>
<td>26 (67%)</td>
</tr>
<tr>
<td>Postoperative PE / DVT</td>
<td>12 (30%)</td>
<td>0 (0%)</td>
<td>28 (70%)</td>
</tr>
</tbody>
</table>
PSI 10: Postoperative physiologic/metabolic MDP opportunities for improvement

Postoperative renal failure requiring dialysis
- Earlier recognition of renal failure may be beneficial
- Evaluate use of nephrotoxic medications, especially NSAIDs in postoperative setting
- Review ionic contrast documentation & use

Postoperative diabetic complications
- Tighter blood sugar control and monitoring in type I DM post-operatively
- Consider insulin drips instead of implanted pumps and/or SQ in the immediate postoperative period
PSI 11: Postoperative respiratory failure
MDP opportunities for improvement

- **Coding**
 - Avoid using 96.04 code when intubation is an expected part of a subsequent procedure
 - Short term intubation, such as overnight, should not be coded as respiratory failure unless clinical criteria are satisfied

- **Clinical**
 - Evaluate causation - oversedation in one hospital was a leading cause of respiratory complications
 - Improve documentation of reasons for re-intubation or prolonged ventilation (on an ongoing basis)
 - Some patients probably could have been extubated earlier (and would then not have counted as respiratory failure)
 - Significant underuse (or underdocumentation) of lung expansion modalities, such as incentive spirometry
Monitor for inadequate documentation, such as “rule out” DVT or PE without alternative diagnosis established after study.

- Use new ICD-9-CM codes to capture chronic VTE.

- More timely (day 0) use of pharmacologic prophylaxis may be beneficial, especially for perioperative patients at intermediate risk and without contraindications (consider adequacy of mechanical prophylaxis alone).
Case study: Postoperative DVT/PE Coding Accuracy

Coding Accuracy

- 2006: 71%
- 2007: 73%
- 2008: 84%
- 2009 Q1 (HAC): 89%
- 2009 Q2-4 (HAC): 100%
Case study: Postoperative DVT/PE

AHRQ Patient Safety Indicators

Post Operative DVT or PE

Rate per 1000 Surgical Inpatient Discharges

- Observed
- Target
- UHC Median

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>Q1</td>
<td>N=2740</td>
</tr>
<tr>
<td>2004</td>
<td>Q3</td>
<td>N=2650</td>
</tr>
<tr>
<td>2005</td>
<td>Q1</td>
<td>N=2751</td>
</tr>
<tr>
<td>2005</td>
<td>Q3</td>
<td>N=2760</td>
</tr>
<tr>
<td>2006</td>
<td>Q1</td>
<td>N=2797</td>
</tr>
<tr>
<td>2006</td>
<td>Q3</td>
<td>N=2836</td>
</tr>
<tr>
<td>2007</td>
<td>Q1</td>
<td>N=2846</td>
</tr>
<tr>
<td>2007</td>
<td>Q3</td>
<td>N=2808</td>
</tr>
</tbody>
</table>
Retrospective Surgical Audit
Confirmed cases

Postoperative Drug Prophylaxis Ordered and 1st Drug Dose Administered within 24 Hours of Surgery (N=17) (Aug-Oct 08)

- MD Order w/in 24 hrs of Surgery: 71%
- Receipt of 1st dose w/in 24 hrs of Surgery: 53%
Action Plan for Postoperative DVT/PE

Goal: Reduce the rate of DVT & PE by 25% by Dec 2008.

<table>
<thead>
<tr>
<th>Action</th>
<th>Agents</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor concurrent MD ordering practices of DVT prophylaxis & educate/reinforce Epic order sets.</td>
<td>Quality Specialist to audit 10 charts/wk of General & Ortho Surgery pts & educate MDs.</td>
<td>Begin Feb 1</td>
</tr>
<tr>
<td>Review concurrent DVT/PE cases for adherence to DVT prophylaxis guidelines monthly.</td>
<td>Quality Specialist to perform audit based on monthly report of + radiology tests.</td>
<td>Feb 18</td>
</tr>
<tr>
<td>Examine & present results from concurrent monitoring & audit & NSQIP data to providers.</td>
<td>P. Pilotin & K. Bashaw to discuss results with Chairs of General & Orthopedic Surgery.</td>
<td>Feb 25</td>
</tr>
<tr>
<td>Educate physicians to DVT guidelines and order sets.</td>
<td>P. Pilotin to develop/distribute materials of DVT guidelines & screen shots of Epic DVT order set.</td>
<td>Feb 15</td>
</tr>
<tr>
<td>Establish rules & rates for DVT/PE cases for individual MD profiles.</td>
<td>Quality Dept to establish rules & rates in Midas.</td>
<td>March 31</td>
</tr>
<tr>
<td>Refine DVT prophylaxis guidelines for medical patients.</td>
<td>K. Posley to review/revise guidelines.</td>
<td>Feb 1</td>
</tr>
</tbody>
</table>
Concurrent Surgical Audit

- Concurrent audit started in Feb 08; conducted by Quality Specialist 24 hours after surgery on orthopedic surgery and general surgery patients

- “Risk level” of patient is assessed by Quality Specialist & compliance determined based on current order

- Surgical DVT Prophylaxis must be ordered and 1st drug dose given within 24 hours after surgery

- If no order or inadequate order, a “fix-it” ticket is placed in medical record so MD can order or revise prophylaxis

DVT Prophylaxis “Fix it Ticket”

- Today’s Date:
- Patient Name: ____________________________
- MRN: ____________________________
- Unit: ____________________________
- Attending MD: ____________________________
- Resident: ____________________________

Dear Physician:

As soon as possible, please either:

- Order DVT Prophylaxis:
 - Pharmacologic agent
 - Mechanical compression

OR,

- Document a contraindication to DVT Prophylaxis.

Thank you for providing quality care to your patient!

Any questions?

Please call our DVT Prophylaxis Specialist:

Julie Wahlig, RN MA at Ext. 1-6180 or Pager 16621
DVT/PE Risk Assessment in Epic

Order Set (Contact Date: 7/17/2007)

- **IP GEN VTE PROPHYLAXIS**
 - Learn more about DEEP VENOUS THROMBOSIS PREVENTION at the Lane Cornex Internal Medicine portal

- **VTE PROPHYLAXIS**
 - Hyperlink (placeholder) Risk Assessment Tool VTE Prophylaxis Guidelines for Surgery

- **Low Risk DVT/PE Prophylaxis** (<5% risk of DVT: Patient <40 years old and minor surgery and no additional risk factors)
 - (Low Risk, No Pharmacological VTE Prophylaxis Indicated) Routine, ONCE
 - Sequential Compression Device (SCD) Routine, ONCE

- **Moderate Risk DVT/PE Prophylaxis** (10-20% risk of DVT: Patient 40-60 years old with no additional risk factors or minor surgery in patients with additional risk factors)
 - enoxaparin (LOVENOX) 40 mg/mL syringe 40 mg, SUBCUTANEOUS, DAILY
 - heparin 10,000 units/mL injection (for subcut) 5000 Units, SUBCUTANEOUS, EVERY 12 HOURS
 - Sequential Compression Device (SCD) Routine, ONCE

- **High Risk DVT/PE Prophylaxis** (<20% risk of DVT: Surgery in patients >60 years old or age >40 years with additional risk factors)
 - enoxaparin (LOVENOX) 30 mg/mL syringe 30 mg, SUBCUTANEOUS, 2 TIMES DAILY
 - enoxaparin (LOVENOX) 40 mg/mL syringe 40 mg, SUBCUTANEOUS, DAILY
 - heparin 10,000 units/mL injection (for subcut) 5000 Units, SUBCUTANEOUS, EVERY 8 HOURS
 - Sequential Compression Device (SCD) Routine, ONCE

- **Highest Risk DVT/PE Prophylaxis** (40-80% risk of DVT: Surgery in patients with multiple risk factors or hip or knee arthroplasty, hip fracture surgery, major trauma or spinal cord injury) Warfarin started day of surgery, target INR 2-3
 - enoxaparin (LOVENOX) 30 mg/mL syringe 30 mg, SUBCUTANEOUS, 2 TIMES DAILY
 - fondaparinux (ARIXTRA) 2.5 mg 0.5 mL syringe 2.5 mg, SUBCUTANEOUS, DAILY
 - warfarin (COUMADIN) tablet Oral, DAILY
 - Sequential Compression Device (SCD) Routine, ONCE

- **VTE Adjunct Orders**
 - Early Ambulation Routine, AS TOLERATED
Case study: Too soon to declare victory

Incidence of DVT/PE by MS-DRG Type
(CY 2006 Q1 to 2009 Q4)

Findings/Actions

- **Overall incidence of hospital-acquired DVT/PE reflects a downward trend**
- **Review process for fall-out cases expanded to identify improvement opportunities**
- **Leverage Epic reports to provide real time data**
- **Monitor compliance with order set and address non compliance**
Case study from another AMC

NMH DVT/PE and Bleed Events (excluding OB, Peds, and Psych)

Protocol Implemented

Source: EPSI Coded Diagnosis Data
Excludes patients with DVT/PE Present on Admission
Bleeding Data represents patients that had a bleeding complication due to an anticoagulant
Occasional overcoding of intraoperative bleeding or other routine events as APL

Most true positive cases had extenuating circumstances, although some were probably preventable with earlier conversion of laparoscopic to open abdominopelvic surgery, or use of Doppler ultrasound to identify key structures

Hospitals with inexperienced operators performing technically difficult procedures may experience patterns of similar events
Acknowledgments and references

- AHRQ Quality Indicators project team: Mamatha Pancholi, John Bott
- Gordon and Betty Moore Foundation: Amy Mushlin
- MDP partners: Stanford University Medical Center, San Francisco General Hospital, Sutter Roseville Medical Center
- University HealthSystem Consortium: Joanne Cuny, Julie Cerese, and team
Technical Assistance support via Teleconference—

- Support for integrating AHRQ QI software to calculate rates from your administrative data
- Support implementing AHRQ quality & safety resources relevant to specific QI’s
- Other forms of tailored support in response to high priority needs

Case study of your efforts—HRET and FHA will follow up with you.
Questions?