Why Focus On Postoperative Respiratory Failure?

Premier Healthcare Alliance
Postoperative Respiratory Failure Sprint
November 10, 2010

Garth H. Utter, MD MSc
University of California, Davis
Disclosures

- Agency for Healthcare Research and Quality (AHRQ) “Support for Quality Indicators” Project Team Member
- No commercial interests
Overview

- What is postoperative respiratory failure?
- Is it an important problem?
- Why does it occur?
- Why use it as a quality indicator?
- Is the indicator accurate?
- How is the indicator helpful?
Definitions of PRF

- **Mechanical ventilation >48 hrs**

- **Mechanical ventilation >5 days**

- **Mechanical ventilation >48 hrs or unplanned reintubation**

- **Mechanical ventilation >24 hrs or intubation >1 hr after procedure**

Incidence of PRF

PRF Is Associated With …

• Increased cost
• Increased length of stay
• Increased 30-day mortality
• Increased 5-year mortality
Why Does PRF Occur?

- **Impaired ventilation**
 - Diminished ventilatory drive
 - Inadequate lung expansion
 - Inadequate ventilatory muscle function
 - Excessive work of breathing
 - Alveolar hypoventilation

- **Impaired oxygenation**
 - V/Q mismatch
 - Hypoventilation

- **Inadequate or threatened airway**
Patient Factors and PRF

- Age
- History of COPD, CHF
- Smoking
- Functional dependence
- Serum albumin <3.0 g/dL
- BUN >30 mg/dL
- ASA class
Anesthetic Factors and PRF

• **General anesthesia**
 – Decreases FRC, increases atelectasis
 – Promotes V/Q mismatch

• **Neuraxial blockade vs. general anesthesia**

• **Residual neuromuscular blockade**

• **Postoperative epidural analgesia**

• **Patient controlled vs. on demand analgesia**
Procedure Factors and PRF

- Thoracic, abdominal, vascular, head/neck procedures
- Emergency procedures
- Prolonged procedures
- Open vs. laparoscopic
- Nasogastric tube
Measures That Prevent PRF

• **Good or fair evidence:**
 – Lung expansion exercises
 – Selective use of nasogastric tubes (abdominal cases)
 – Short-acting neuromuscular blockade

• **Conflicting or insufficient evidence:**
 – Epidural anesthesia/postoperative analgesia
 – Preoperative smoking cessation
 – Laparoscopic technique
 – Routine total enteral or parenteral nutrition
 – Routine pulmonary artery catheterization

AHRQ and the PSIs

- Need for measures of quality of care
- Hospitalization discharge data
- Complications Screening Program (Iezzoni)
- AHRQ Quality Indicators
 - Prevention Quality Indicators
 - Inpatient Quality Indicators
 - Patient Safety Indicators
 - Pediatric Quality Indicators
- Other uses: hospital comparison, P4P
Rationale for PSIs

- Data vital to assess quality of care
- Discharge data already collected
- Discharge data is virtually complete
 - Allows comparison
- Many adverse events are preventable
- Incentive for improving care
Patient Safety Indicators

Selected postoperative complications
- Postoperative pulmonary embolism or deep vein thrombosis
- Postoperative respiratory failure
- Postoperative sepsis
- Postoperative physiologic and metabolic derangement
- Postoperative wound dehiscence in abdominopelvic surgical patients
- Postoperative hip fracture
- Postoperative hemorrhage or hematoma

Selected technical adverse events
- Pressure ulcer
- Central venous catheter-related bloodstream infection

Other
- Complications of anesthesia
- Death in low-mortality DRGs
- Death among surgical inpatients
- Transfusion reaction

Obstetric trauma and birth trauma
- Birth trauma – injury to neonate
- Obstetric trauma – vaginal delivery with instrument
- Obstetric trauma – vaginal delivery without instrument
- Obstetric trauma – cesarean section delivery

Technical difficulty with procedures
- Iatrogenic pneumothorax
- Accidental puncture or laceration
- Foreign body left during procedure
Weaknesses of PSIs

- Lack of standard definitions
- Available codes may not apply well
- Data may be miscoded
- Data may not reflect what happened
- Diagnoses may have been present on admission
- Adverse events ≠ medical errors
- PSIs could influence coding practices or patient selection
PSI 11: PRF

• **Numerator:**
 – “Acute respiratory failure” (518.81) as a secondary diagnosis
 OR
 – One of the following:
 • “Insertion of endotracheal tube” (96.04) ≥1 day after main procedure
 • “Continuous mechanical ventilation of unspecified duration” (96.70) or “Continuous mechanical ventilation for <96 hrs” (96.71) ≥2 days after main procedure
 • “Continuous mechanical ventilation for ≥96 hrs” (96.72) ≥0 days after main procedure

• **Denominator:**
 – Adults undergoing elective operations
 – Excludes
 • Diagnoses of respiratory failure on admission
 • Tracheostomy before or during the main procedure
 • Patients with primary respiratory, circulatory, or pregnancy-related process or a neuromuscular disorder
What Makes a PSI Valid?

• Face validity—it makes sense
• Sensitivity
• Specificity
• Captures real variation in quality
• Performs well in different patient groups
• Easy to apply
• Fosters real quality improvement
Incidence of PSI 11

Cases per 1,000 elective surgical patients

Source: HCUPnet
Related Indicators

- Predecessor (CSP3)
 - 33/44 cases = 75% PPV
 - Not associated with process failures

- Pediatric version of indicator: few cases preventable

Weingart, *Med Care*, 2000

Possible Weaknesses

• **Accuracy**
 - Unreliability of physician diagnosis
 - Overlap with airway management
 - Alternative codes: 518.5
 - Non-invasive positive pressure ventilation

• **Utility**
 - Strong case mix bias
 - Questionable preventability
 - Wide variety of mechanisms: no simple solution
Does PSI 11 Detect Real PRF?

• 90% of cases coded correctly
 – 5% not elective
 – 3% numerator code error (mostly 518.81)
 – 1% PRF present on admission

• 83% of cases both coded correctly and met clinical criteria
 – 4% airway protection
 – 1% cardiac arrest rather than PRF per se
 – 1% respiratory failure after admission but before the operation

What Are Confirmed Cases Like?

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PRF Confirmed (n=507)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>60 ± 15</td>
</tr>
<tr>
<td>Comorbid condition, n (%)</td>
<td>252 (50)</td>
</tr>
<tr>
<td>Body Mass Index ≥ 35, n (%)</td>
<td>82 (17)</td>
</tr>
<tr>
<td>Abdominal operation, n (%)</td>
<td>274 (54)</td>
</tr>
<tr>
<td>ASA III or greater, n (%)</td>
<td>409 (81)</td>
</tr>
<tr>
<td>Duration of procedure, hours</td>
<td>5.0 ± 3.2</td>
</tr>
<tr>
<td>Time from operation to PRF, days</td>
<td>3 (1-6)</td>
</tr>
</tbody>
</table>

Outcomes of Confirmed Cases

<table>
<thead>
<tr>
<th>Outcome</th>
<th>PRF Confirmed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=507)</td>
</tr>
<tr>
<td>Disposition of survivors, n (%)</td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>274 (54)</td>
</tr>
<tr>
<td>Another acute care hospital</td>
<td>12 (3)</td>
</tr>
<tr>
<td>SNF, other long-term care facility</td>
<td>98 (25)</td>
</tr>
<tr>
<td>Inpatient rehabilitation/psych</td>
<td>71 (18)</td>
</tr>
<tr>
<td>Other</td>
<td>10 (2)</td>
</tr>
<tr>
<td>Length of stay, days</td>
<td>20 (11-35)</td>
</tr>
<tr>
<td>Tracheostomy, n (%)</td>
<td>113 (22)</td>
</tr>
<tr>
<td>Death, n (%)</td>
<td>116 (23)</td>
</tr>
</tbody>
</table>

Further Questions

- Does PSI 11 detect most cases of PRF?
- Can the coding of elective status be improved?
- Can the PRF-related codes be improved?
- Should the diagnosis criteria be kept?
- Could more be done to prevent PSI 11 cases?
Review

• What is postoperative respiratory failure? → Prolonged mechanical ventilation

• Is it an important problem? → Yes, both common and morbid

• Why does it occur? → Many factors

• Why use it as a quality indicator? → Coding

• Is the indicator accurate? → PPV fairly good

• How is the indicator helpful? → Jury is still out
Questions?